Representations of Cherednik Algebras

Matthew Lipman
Mentor: Gus Lonergan

Sixth Annual MIT-PRIMES Conference May 21, 2016

One nice set of operators are those d which can be written in terms of differentiation and multiplication by fixed polynomials, known as differential operators.

One nice set of operators are those d which can be written in terms of differentiation and multiplication by fixed polynomials, known as differential operators.

The operator $A=x \frac{\partial}{\partial x}$ (take the derivative, then multiply by x) is one. However, the operator S_{12} that replaces all x_{1} 's with x_{2} 's and vice-versa, is not.

One nice set of operators are those d which can be written in terms of differentiation and multiplication by fixed polynomials, known as differential operators.

The operator $A=x \frac{\partial}{\partial x}$ (take the derivative, then multiply by x) is one. However, the operator S_{12} that replaces all x_{1} 's with x_{2} 's and vice-versa, is not.

The product rule yields $\frac{\partial}{\partial x} x=x \frac{\partial}{\partial x}+1$ and $\frac{\partial}{\partial x_{2}} x_{1}=x_{1} \frac{\partial}{\partial x_{2}}$. Consider the algebra generated by $x_{1}, x_{2}, \ldots, x_{n}$ (multiplication by variables) and $\partial_{1}, \partial_{2}, \ldots, \partial_{n}$ (differentiation), subject to $\left[x_{i}, \partial_{j}\right]=x_{i} \partial_{j}-\partial_{j} x_{i}=-\delta_{i j}$, i.e. -1 if $i=j$ and 0 otherwise.

Recall $A=x \frac{\partial}{\partial x}=\frac{\partial}{\partial x} x-1$.

Recall $A=x \frac{\partial}{\partial x}=\frac{\partial}{\partial x} x-1$.

We have

$$
A^{2}=x \frac{\partial}{\partial x} x \frac{\partial}{\partial x}
$$

Recall $A=x \frac{\partial}{\partial x}=\frac{\partial}{\partial x} x-1$.

We have

$$
\begin{aligned}
A^{2} & =x \frac{\partial}{\partial x} x \frac{\partial}{\partial x} \\
& =x\left(x \frac{\partial}{\partial x}+1\right) \frac{\partial}{\partial x}
\end{aligned}
$$

Recall $A=x \frac{\partial}{\partial x}=\frac{\partial}{\partial x} x-1$.

We have

$$
\begin{aligned}
A^{2} & =x \frac{\partial}{\partial x} x \frac{\partial}{\partial x} \\
& =x\left(x \frac{\partial}{\partial x}+1\right) \frac{\partial}{\partial x} \\
& =x^{2} \frac{\partial^{2}}{\partial^{2} x}+x \frac{\partial}{\partial x}
\end{aligned}
$$

Now, suppose we want to extend this to have, e.g. S_{12}. We can easily apply a similar logic to add all permutations into our algebra.

Now, suppose we want to extend this to have, e.g. S_{12}. We can easily apply a similar logic to add all permutations into our algebra.

The Dunkl operators $D_{i}=\frac{\partial}{\partial x_{i}}-c \sum_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}\left(1-S_{i j}\right)$ commute with each other (with c a fixed constant).

Now, suppose we want to extend this to have, e.g. S_{12}. We can easily apply a similar logic to add all permutations into our algebra.

The Dunkl operators $D_{i}=\frac{\partial}{\partial x_{i}}-c \sum_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}\left(1-S_{i j}\right)$ commute with each other (with c a fixed constant). They also share the familiar property of derivatives that $\operatorname{deg} D p \leq(\operatorname{deg} p)-1$.

Now, suppose we want to extend this to have, e.g. S_{12}. We can easily apply a similar logic to add all permutations into our algebra.

The Dunkl operators $D_{i}=\frac{\partial}{\partial x_{i}}-c \sum_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}\left(1-S_{i j}\right)$ commute with each other (with c a fixed constant). They also share the familiar property of derivatives that $\operatorname{deg} D p \leq(\operatorname{deg} p)-1$.

It is apparently useful in certain fields, like the representation theory of S_{n}.

$$
D_{1} x_{1}^{2}=\frac{\partial}{\partial x_{1}} x_{1}^{2}-c \sum_{i \neq 1}\left(x_{1}-x_{i}\right)^{-1}\left(1-S_{1 i}\right) x_{1}^{2}
$$

$$
\begin{aligned}
D_{1} x_{1}^{2} & =\frac{\partial}{\partial x_{1}} x_{1}^{2}-c \sum_{i \neq 1}\left(x_{1}-x_{i}\right)^{-1}\left(1-S_{1 i}\right) x_{1}^{2} \\
& =2 x_{1}-c \sum_{i \neq 1}\left(x_{1}-x_{i}\right)^{-1}\left(x_{1}^{2}-x_{i}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
D_{1} x_{1}^{2} & =\frac{\partial}{\partial x_{1}} x_{1}^{2}-c \sum_{i \neq 1}\left(x_{1}-x_{i}\right)^{-1}\left(1-S_{1 i}\right) x_{1}^{2} \\
& =2 x_{1}-c \sum_{i \neq 1}\left(x_{1}-x_{i}\right)^{-1}\left(x_{1}^{2}-x_{i}^{2}\right) \\
& =2 x_{1}-c \sum_{i \neq 1}\left(x_{1}+x_{i}\right) \\
& =2 x_{1}-c(n-1) x_{1}-c \sum x_{i}
\end{aligned}
$$

The set of linear transformations (i.e. matrices) from one (vector) space to itself, denoted End V is an algebra, with addition and scalar multiplication the obvious and multiplication being composition.

The set of linear transformations (i.e. matrices) from one (vector) space to itself, denoted End V is an algebra, with addition and scalar multiplication the obvious and multiplication being composition.

A representation of an algebra is a V with a homomorphism (i.e. structure-preserving map) ρ to End V.

The set of linear transformations (i.e. matrices) from one (vector) space to itself, denoted End V is an algebra, with addition and scalar multiplication the obvious and multiplication being composition.

A representation of an algebra is a V with a homomorphism (i.e. structure-preserving map) ρ to End V.

For any V, there is an automatic representation of End V with the identity map, and for any A, with A an algebra, there is a obvious representation of A with $\rho(x)(y)=0$ for all $x \in A, y \in V$. Finally, if your algebra is a field, a representation is just a vector space

Working in characteristic (mod) $p>0$.

Working in characteristic (mod) $p>0$.
Cherednik algebras deform differential operators so that we use D_{i} instead of $\frac{\partial}{\partial x_{i}}$

Working in characteristic (mod) $p>0$.
Cherednik algebras deform differential operators so that we use D_{i} instead of $\frac{\partial}{\partial x_{i}}$

In quantum mechanics, we can adjust the $\frac{\partial}{\partial x_{i}}$ term in Dunkl operators by a factor of \hbar. Then, the x_{i} are position vectors, D_{i} are momenta, and the extra part is accounting for Heisenberg's Uncertainty Principle.

Matthew Lipman Mentor: Gus Lonergan

Dunkl: "Singular Polynomials for the Symmetric Groups" proved results concerning the kernel of $D_{i}-D_{j}$.

Dunkl: "Singular Polynomials for the Symmetric Groups" proved results concerning the kernel of $D_{i}-D_{j}$.

Pavel et al.: "Representations of Rational Cherednik Algebras with Minimal Support and Torus Knots" discuss Cherednik algebras with characteristic 0 .

Dunkl: "Singular Polynomials for the Symmetric Groups" proved results concerning the kernel of $D_{i}-D_{j}$.

Pavel et al.: "Representations of Rational Cherednik Algebras with Minimal Support and Torus Knots" discuss Cherednik algebras with characteristic 0 .

Devadas and Sun: "The Polynomial Representation of the Type $A_{n 1}$ Rational Cherednik Algebra in Characteristic $p \mid n "$ proves similar kinds of results for characteristic $p \mid n$ by extending certain results from Pavel to positive characteristic.

We are trying the case $p \mid n-1$, and will ideally develop techniques or conjectures which will be used for $p \mid n+1$ and ideally more. We currently have three unproven conjectures

We are trying the case $p \mid n-1$, and will ideally develop techniques or conjectures which will be used for $p \mid n+1$ and ideally more. We currently have three unproven conjectures

1. Devadas and Sun relied on a nice set of functions f_{i} and the fact that $n \mid D f_{i}$ so that the f_{i} are singular in their case. We believe $(n-1) \mid D f_{i} f_{j}$.

We are trying the case $p \mid n-1$, and will ideally develop techniques or conjectures which will be used for $p \mid n+1$ and ideally more. We currently have three unproven conjectures

1. Devadas and Sun relied on a nice set of functions f_{i} and the fact that $n \mid D f_{i}$ so that the f_{i} are singular in their case. We believe $(n-1) \mid D f_{i} f_{j}$.
2. We know that $D^{2} x_{i}^{2 p+2}=0$ for small $n \equiv 1(\bmod p)$. We hope to show that $D^{r} x_{i}^{r p+r}=0$ whenever $n \equiv r-1(\bmod p)$

We are trying the case $p \mid n-1$, and will ideally develop techniques or conjectures which will be used for $p \mid n+1$ and ideally more. We currently have three unproven conjectures

1. Devadas and Sun relied on a nice set of functions f_{i} and the fact that $n \mid D f_{i}$ so that the f_{i} are singular in their case. We believe $(n-1) \mid D f_{i} f_{j}$.
2. We know that $D^{2} x_{i}^{2 p+2}=0$ for small $n \equiv 1(\bmod p)$. We hope to show that $D^{r} x_{i}^{r p+r}=0$ whenever $n \equiv r-1(\bmod p)$
3. We also conjecture that, for $t \geq 3$ (and showed this for $t=0,1,2)$:

$$
D y_{1}{ }^{t} x_{1}^{s}=\sum_{r=0}^{t}(-c)^{r} \frac{s!}{(s-r)!} f(r)
$$

where $f(0)=\sum_{a=s-t} x_{1}^{a}, f(1)=\sum_{a+b=s-t} \sum_{i \neq 1} x_{1}^{a} x_{i}^{b}$, $f(2)=\sum_{a+b+c=s-t} \sum_{1 \neq i \neq j \neq 1} x_{1}^{a} x_{i}^{b} x_{j}^{c}$, etc.

I would like to thank:
My mentor, Gus Lonergan
My parents
and the PRIMES Program, especially Pavel for his help with the project and Tanya for her help with the presentation.

